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Abstract: This paper studies the local subspace identification of 1D homogeneous networked
systems. The main challenge lies at the unmeasurable interconnection signals between neigh-
boring subsystems. Since there are many unknown inputs to the concerned local system, the
corresponding identification problem is semi-blind. To cope with this problem, a nuclear norm
optimization based subspace identification is presented, which is carried out for solving the
Markov parameters of a locally lifted system, followed by determining the system matrices
of a single subsystem. In the step of Markov parameter estimation, we form a nuclear norm
regularized optimization problem which can well handle the adverse effects of the unknown
system inputs as long as the number of unknown system inputs is relatively small. In the step of
system realization, we again derive a nuclear norm regularized optimization formulation which
can cope with the under-determinedness of the realization problem. In the end, the overall
identification algorithm is summarized.

Keywords: Markov parameter, system realization, low rank constraint

1. INTRODUCTION

With the emergence of large-scale networks, the research
on distributed systems has been intensively carried out in
both control and identification areas. Although tremen-
dous progress has been made in the field of distributed
control, the identification of networked systems is less
developed. From an engineering perspective, the system
identification research is more relevant than that about
system control, because system identification can provide
for an estimate of the concerned system model which is
essential for conducting model based control research.

In this paper, the subspace identification of 1D large-
scale distributed systems is investigated. To date, several
contributions have been reported on this topic; however,
it has not been adequately addressed. By representing the
system model in terms of transfer functions, parametric
system identification approaches have been proposed in Ali
et al. (2011); Dankers et al. (2013). Since they are required
to solve nonlinear (usually non-convex) optimization prob-
lems, it is difficult to ensure the global optimality of the
obtained solutions. For the transfer function represented
networked systems, the interconnecting signals between
neighboring subsystems can always be measurable, which
greatly simplifies the identification problem.

In practical applications such as identifying distributed pa-
rameter systems described by PDEs, the interconnecting
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signals between neighboring subsystems are unmeasurable.
By modeling the interconnecting signals in the network as
the states of a state-space represented network, several
identification methods have been developed. In Rice and
Verhaegen (2011), the state-space system model having
sequential, semi-separability (SSS) property is parameter-
ized, and the associated identification problem is handled
by solving a nonlinear (non-convex) optimization problem.
For large-scale circulant systems, a subspace identification
method, by exploiting the particular circularity property,
has been developed in Massioni and Verhaegen (2008).
In Massioni and Verhaegen (2009), the identification of
a decomposable system with a general network topology
is considered. Since the identification of system matrices
involves solving a Bilinear Matrix Inequality (BMI), the
obtained solution can be a local optimum.

In order to ensure the scalability of the identification
methods for large-scale systems, only local system inputs
and outputs can be used. As a result, the corresponding
local system identification problem involves several un-
known system inputs, which poses great challenge to the
identification problem. In Haber and Verhaegen (2014), a
subspace identification algorithm is presented, which tries
to approximate the unknown system inputs (unmeasurable
neighboring states) using a linear combination of local
input and output data. This method suits the case for
which the neighboring subsystems are weakly coupled. In
Matni and Rantzer (2014), a nuclear norm optimization
based identification method is provided, which tries to
separate the local dynamics and global dynamics by ex-
ploiting order and rank distinctions. In this method, the
unknown system inputs are assumed to be energy bounded



Fig. 1. Diagram of 1D distributed homogeneous system

disturbances, and they are considered as constraints to the
nuclear norm optimization problem.

Inspired by the N2SID (nuclear norm subspace identifica-
tion) method in Verhaegen and Hansson (2014), we present
a subspace identification method to solve the local identifi-
cation of large-scale 1D homogeneous networked systems.
First, a nuclear norm regularized optimization problem is
formed to estimate Markov parameters which exploits the
low rank properties of the extended observability matrix
and the unknown-input related term in the data equation,
as well as the Toeplitz block Toeplitz structure of the
Markov parameter matrix. After obtaining the Markov
parameters of the local system, the system matrices of a
single subsystem are estimated by solving another nuclear
norm optimization problem which exploits the low rank
property of a matrix constructed by the involved redun-
dant parameters.

The paper is organized as follows. Section 2 formulates the
identification problem. Section 3 provides an approach to
estimate Markov parameters using local input and output
data, followed by the system realization in Section 4. Sec-
tion 5 summarizes the proposed identification algorithm.
Section 6 concludes this contribution.

2. PROBLEM FORMULATION

We consider a 1D distributed homogeneous system con-
sisting of N subsystems, as shown in Fig. 1. For a large-
scale distributed system, we assume that N � 0. The i-th
subsystem Σi, for 2 ≤ i ≤ N − 1, is represented by the
state-space model as follows:

xi(k + 1) = Axi(k) +Bui(k) +Alxi−1(k) +Arxi+1(k)

yi(k) = Cxi(k) + ei(k), i = 1, · · · , N,
(1)

where xi(k) ∈ R
n×1, ui(k) ∈ R

m×1 and yi(k) ∈ R
p×1

are the state, input and output of the i-th subsystem,
xi−1(k) and xi+1(k) are the neighboring states of the i-
th subsystem.

For the above concerned large-scale system with only
local system input and output data being available, we
aim to identify the system matrices A,Al, Ar, B, C up
to a similarity transform; that is, the estimated system
matrices satisfy that Â = QAQ−1, Âl = QAlQ

−1, Âr =
QArQ

−1, Ĉ = CQ−1, and B̂ = QB for some nonsingular
ambiguity matrix Q ∈ R

n×n. Here, the notion ”local
system” around the i-th subsystem refers to a system
combined by the subsystems {Σj}i+R

j=i−R with R � N .

In this paper, we assume that C is flat matrix, namely
p ≤ n. Otherwise, the state in (1) can be represented in
terms of the output. The local system model can then
be recasted into an errors-in-variables (EIV) model, which

can be solved using many classic identification methods,
see Ljung (1999); Verhaegen and Verdult (2007).

3. MARKOV PARAMETER ESTIMATION

For the local system consisting of {Σj}i+R
j=i−R, the corre-

sponding spatially lifted state-space model reads:

xi(k + 1) = ARxi(k) +BRui(k) +DRvi(k),

y
i
(k) = CRxi(k) + ei(k),

(2)

where AR =

⎡
⎢⎢⎢⎣

A Ar

Al
. . .

. . .
. . .

. . . Ar

Al A

⎤
⎥⎥⎥⎦, BR =

⎡
⎢⎢⎢⎢⎣

B
B

.. .
B

B

⎤
⎥⎥⎥⎥⎦,

CR =

⎡
⎢⎢⎢⎢⎣

C
C

.. .
C

C

⎤
⎥⎥⎥⎥⎦ with the subscript R indicating

that AR, BR, CR have R block rows. xi(k) =

⎡
⎢⎣
xi−R(k)

...
xi+R(k)

⎤
⎥⎦,

ui(k) =

⎡
⎢⎣
ui−R(k)

...
ui+R(k)

⎤
⎥⎦, y

i
(k) =

⎡
⎢⎣
yi−R(k)

...
yi+R(k)

⎤
⎥⎦, DR =

⎡
⎢⎢⎢⎢⎣

Al 0
0 0
...

...
0 0
0 Ar

⎤
⎥⎥⎥⎥⎦, and vi(k) =

[
xi−R−1(k)
xi+R+1(k)

]
.

In the sequel, we assume that the state-space model in (2)
is minimal. The data equation of the state-space model (2)
is given as:

Y i
k,s,r = Osx

i
k,r + T BR

s U i
k,s,r + T DR

s V i
k,s,r + Ei

k,s,r, (3)

where the block-Hankel matrix

Y i
k,s,r =

⎡
⎢⎣

y
i
(k) · · · y

i
(k + r − 1)

... . .
. ...

y
i
(k + s− 1) · · · y

i
(k + r + s− 2)

⎤
⎥⎦

with the superscript i being the spatial index, the sub-
scripts k, s, r being the time indices of the top-left entry,
the number of block rows and the number of block column-
s, respectively. The block-Hankel matrices U i

k,s,r, V
i
k,s,r,

Ei
k,s,r are defined similarly to Y i

k,s,r. The block-Toeplitz

matrix T BR
s =

⎡
⎢⎢⎣

0
CRBR 0

...
. . .

. . .

CRA
s−2
R BR · · · CRBR 0

⎤
⎥⎥⎦. The block-

Toeplitz matrix T DR
s and T BR

s have similar definitions.

The extended observability matrix Os =

⎡
⎢⎢⎣

CR
CRAR

...
CRA

s−1
R

⎤
⎥⎥⎦ and

xi
k,r = [xi(k) · · ·xi(k + r − 1)].



From the data equation (3), we can find that the terms

Osx
i
k,r and T DR

s V i
k,s,r have low ranks.

Lemma 1. The sum Osx
i
k,r +T DR

s V i
k,s,r in (3) has a rank

satisfying

rank
(
Osx

i
k,r + T DR

s V i
k,s,r

)
≤ (2R+1)n+2(s− 1)n. (4)

The result in the above lemma can be straightforwardly
derived. It can be seen that when R or s is not too small,
the sum Osx

i
k,r+T DR

s V i
k,s,r has a lower rank with relation

to the dimension of Y i
k,s,r. Using this low rank property

and implementing the N2SID method in Verhaegen and
Hansson (2014), we propose a nuclear norm regularized
optimization for the local system identification:

min
T BR

s ∈T ,Ŷ
i

k,s,r∈H
‖Ŷ i

k,s,r − T BR
s U i

k,s,r‖∗

+ λ

k+r+s−2∑
t=k

‖ŷ
i
(t)− y

i
(t)‖2,

(5)

where λ is a regularization parameter to trade off the
output fitting term and the nuclear norm term, T and
H denote the sets of block-Toeplitz and block-Hankel
matrices having the same structures of T BR

s and Y i
k,s,r,

respectively. The block-Hankel matrix Ŷ
i

k,s,r is construct-
ed by the virtual noise-free output ŷ

i
(t) satisfying that

ŷ
i
(t) = y

i
(t)− ei(t).

Solving the optimization problem (5) yields the estimated

block-Toeplitz matrix T BR
s and further augmented ma-

trices AR, BR, CR up to a similarity transform. Howev-
er, the primal objective of this study is to estimate the
system matrices Al, A,Ar, B, C in (1) up to a similarity
transform. By taking an insight into the structure of the
block Toeplitz matrix T BR

s , we can find that each block

Markov parameter in T BR
s still has finer structures. Fig.

2 shows the structures of the block Markov parameters
{M i = CRA

i
RBR}3i=1, where R = 3 and each of its block

element having size 2× 2.

Fig. 2. Partial Toeplitz structure of {CRA
i
RBR}3i=1. Top-

left: i = 1; top-right: i = 2; bottom: i = 3. The blue
entries are zeros. The parts surrounded by red curves
have block-Toeplitz structures.

In equation (2), the system matrices AR is a block tri-
diagonal matrix, and CR and BR are block diagonal
matrices. Note that Ai

R for i ≥ 2 is not a block-Toeplitz
matrix any more; however, it is partial Toeplitz matrix, as
shown in Fig. 2.

Lemma 2. Based on the system matrices AR, BR and
CR defined in (2), the matrix M i = CRA

i
RBR has the

following features:

• M i is a banded block matrix which has 2i+1 non-zero
block diagonal lines.

• For the matrix M i with i < 2R + 1, its submatrices
with block row and column indices (j, p) satisfying
i+ 1 ≤ j + p ≤ 4R + 3− i constitute a partial block
Toeplitz region.

Lemma 3. Let the sequence of non-zero block entries from
left to right of the partial Toeplitz region of CRA

i
RBR

be denoted as {Pi,−i, Pi,1−i, · · · , Pi,i−1, Pi,i}. Then these
matrices satisfy the following equality:

i∑
j=−i

Pi,jz
−j = C(Alz

−1 +A+Arz)
iB, (6)

where z ∈ C.

The above lemmas can be derived by expressing AR as
AR = I ⊗ A + J− ⊗ Al + J+ ⊗ Ar, where J− and
J+ are subdiagonal and supperdiagonal identity matrices,
respectively.

By taking account of the partial Toeplitz structures of the
Markov parameters {M i = CRA

i
RBR}s−2

i=0 , the nuclear
norm regularized optimization problem in (5) is solved
by constraining the above mentioned two-layer Toeplitz
structure of T BR

s . It is worth noting that imposing finer

structures on T BR
s will not destroy the convexity of (5);

hence, the estimate of T BR
s can be reliably obtained.

4. SYSTEM REALIZATION

After obtaining the estimate of the block entries of T BR
s ,

we shall develop an approach to realize the state-space
model in (1), namely estimating the system matrices
C,Al, A,Ar, B up to a similarity transform. In order to
focus on the essence of the realization method, we assume
that T BR

s is exactly known. In addition, for the sake of
notational simplicity, we shall demonstrate the system
realization method using the Markov parameters up to the
fourth moment, i.e. {M i = CRA

i
RBR}4i=0.

It is easy to see that M0 is a block diagonal matrix
constructed by CB, M1 is a block tri-diagonal matrix de-
termined by CAlB,CAB and CArB. By induction, we can
find that the Markov parameters {M i}4i=0 can be deter-
mined by the parameters: CB,CAlB,CAB,CArB,CA2

lB,

CAlAB, · · · , CA4
rB. In addition, with T BR

s being avail-
able, the blocks Pi,j for 0 ≤ i ≤ 4 and −i ≤ j ≤ i, as
shown in Lemma 3, are known as well. Let



φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CB
CAlB
CAB
CArB
CA2

lB
CAAlB
CAlAB
CA2B
CArAB
CAArB
CA2

rB
...

CA4
rB

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P0,0

P1,−1

P1,0

P1,1

P2,−2

P2,−1

P2,0

P2,1

P2,2

P3,1

...
P4,4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Based on equation (6), we can find a constant matrix T
such that

Tφ = z. (8)

In the above equation, T and z are known while φ is to be
determined. Since there are more variables than equations
in (8), it is an under-determined linear estimation problem.
By taking an insight into the parameter vector φ, we can
find that the following matrix constructed by φ has a low
rank:

H(φ) =

⎡
⎢⎢⎢⎣

CB CAlB · · · CA2
rB

CAlB CA2
lB · · · CAlA

2
rB

...
...

. . .
...

CA2
rB CA2

rAlB · · · CA4
rB

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
CAl

CA
CAr

CA2
l

CAlA
CAlAr

CAAl

CA2

CAAr

CArAl

CArA
CA2

r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

BT

BTAT
l

BTAT

BTAT
r

BT (A2
l )

T

BT (AlA)T

BT (AlAr)
T

BT (AAl)
T

BT (A2)T

BT (AAr)
T

BT (ArAl)
T

BT (ArA)
T

BT (A2
r)

T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

(9)

By combining equation (8) and the low rank property of
the matrix H(φ), we can form the following nuclear norm
regularized optimization problem

min
φ

‖Tφ− z‖22 + α‖H(φ)‖∗ (10)

where α is a regularization parameter.

Solving the convex optimization problem in (10) yields the
estimates of φ andH(φ). The SVD decomposition ofH(φ)
can then be obtained as follows

H(φ) = [Us Un ]

[
Σs

Σn

] [
V T
s

V T
n

]
, (11)

where Us and Vs consists of n orthogonal columns, and
Σs ∈ R

n×n and Σn are real diagonal matrices with the
diagonal entries of Σs being larger than those in Σn. Let’s
denote O = Us and C = ΣsV

T
s . Then the estimates of C

and B can be directly obtained as follows:

Ĉ = O(1 : p, :),

B̂ = C(:, 1 : m).
(12)

Based on the obtained matrix O and its shift structure,
the matrices Al, A,Ar can be estimated as follows

Âl = [O(1 : 4p, :)]
†

⎡
⎢⎣

O(p+ 1 : 2p, :)
O(4p+ 1 : 5p, :)
O(7p+ 1 : 8p, :)
O(10p+ 1 : 11p, :)

⎤
⎥⎦ ,

Â = [O(1 : 4p, :)]
†

⎡
⎢⎣

O(2p+ 1 : 3p, :)
O(5p+ 1 : 6p, :)
O(8p+ 1 : 9p, :)
O(11p+ 1 : 12p, :)

⎤
⎥⎦ ,

Âr = [O(1 : 4p, :)]
†

⎡
⎢⎣

O(3p+ 1 : 4p, :)
O(6p+ 1 : 7p, :)
O(9p+ 1 : 10p, :)
O(12p+ 1 : 13p, :)

⎤
⎥⎦ .

(13)

5. SUMMARY OF THE IDENTIFICATION METHOD

The presented identification method is divided into two
steps: (a) estimate finer Markov parameters by solving the
nuclear norm regularized optimization problem in (5); (b)
realize the state-space model from the estimated Markov
parameters using the method described in Section 4.

To ease the reference, the developed algorithm is summa-
rized in Algorithm 1.

Algorithm 1: Subspace identification for 1D distributed systems

Step 1 Solve the optimization problem (5) to obtain T BR
s ;

Step 2 Estimate φ by solving the optimization problem in (10);

Step 3 Take the SVD decomposition of H(φ) as shown in (11);

Step 4 Determining C and B as shown in (12);

Step 5 Identifying Al, A,Ar according to (13).

In the above proposed identification method, many param-
eters should be properly selected, such as R and s in (3),
λ in (5), α in (10), and the number of Markov parameters
adopted for system realization. For the parameters R and
s, it is theoretically better to choose large values, which
can result in significant low rank property of the sum
Osx

i
k,r + T DR

s V i
k,s,r in Lemma 1; however, larger s and R

may lead to heavier computational burden when solving
the optimization problem in (5). To select the regulariza-
tion parameters λ and α, they can be empirically chosen
from a sequence of grid points according to the cross-
validation criterion in Verhaegen and Verdult (2007). For
the number of adopted Markov parameters, if we choose a
large number, the linear estimation equation in (8) will be
more under-determined; however, the low rank property of
the matrix H(φ) becomes more significant. Hence, there
exists a trade-off.

6. CONCLUSION

In this paper, we have provided a convex solution to the
local system identification of 1D large-scale distributed
systems. Two contributions have been made in this study:
(a) the effects of unknown system inputs have been greatly
suppressed by using the heuristic low-rank optimization
method; (b) the under-determinedness in the system real-
ization step has been dealt with by exploiting the low rank
property of a matrix constructed by the associated redun-
dant parameters. Since the algorithm development does
not depend on the assumption of small unknown inputs



(neighboring states), the proposed algorithm can perform
well even if the neighboring subsystems are strongly cou-
pled. In our future work, the extension of the presented
algorithm to the identification of high-dimensional large-
scale systems will be explored.
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